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Abstract / 'Oz~y S7

A finite difference method suitable for design calculations of finned

m bodies is described. Efficient numerical calculations are achieved using a

thin fin approximation which neglects fin thickness but retains a correct

description of the fin surface slope. The resulting algorithm is suitable for

treating relatively thin, straight fins with sharp edges. Methods for treating

the fin leading and trailing edges are described which are dependent on the

Mach number of the flow normal to the edge. The computed surface pressures are

compared to experimental measurements taken on cruciform configurations with

supersonic leading and trailing edges and to a swept wing body with detached

leading edge shocks. Calculated forces and moments on body-wing-tail configuration

with subsonic leading edges are compared to experiment also. Body alone

configurations are studied using a Kutta condition to generate a lee-side vortex.

1. Introduction

A practicable means of predicting the nonlinear, inviscid, supersonic

Ishock layer on missile configurations is to numerically solve the steady, three-

dimensional inviscid equations using an efficient finite difference method.

Several computer programs are currently available for this purpose, e.g. Refs.

1-7. Although these supersonic flow field codes can be applied to relatively

, - arbitrary body shapes, their application to practical wing-body-tail

configurations presents some serious computational problems. Existing codes

treat the complete fin-body cross section as a single entity. Thus when

cylindrical coordinates, as shown in Fig. 1, are used a large number of m mesh T
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planes are needed to adequately resolve the fin. When several fins are

present at the same axial station, the number of grid points needed becomes

prohibitively large for practical design calculations. The number of grid

points can be substantially reduced by mapping the fin body cross-section into

a more "rounded" figure. The existing methods utilizing this approach are

based on conformal mapping techniques developed by Moretti 2 ,8 (see Refs. 3,6).

The mappings however are complicated even for the case of a single smooth fin

or wing and often tend to cluster large numbers of mesh points near wing tips.

This reduces the permissible marching step and increases computational time.

The primary focus of the present study is the development of a more efficient

numerical technique for treating finned bodies. To achieve this, the approach

used here departs from the basic computational strategy used in Refs. 1-7

when fin surfaces are present. Instead of considering the cross-sectional

body-fin geometry as a s4 gle entity, the present approach considers the body

alone (i.e., the body with all fin surfaces removed) and the fin geometry

separately. The computational grid is generated using normalizing transforma-

tions 1,4,5,7 applied to the body alone configuration. The fin surfaces are

allowed to extend into the computational region and can be adequately resolved

within a relatively coarse computational grid. In order to treat the complex

flow in the immediate vicinity of fin leading and trailing edges, appropriate ""

local analyses are built into the program which depend strongly on the local

Mach number of the flow component normal to the edge. These local analyses can 4J
range from locally exact, when the edge is sharp and the normal velocity

component is sufficiently supersonic, to ad hoc or semi-empirical in other

situations.

Within this framework, various approaches for numerically treating general

fin surface shapes are possible. One approach would be to introduce extra
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computational points to represent the fin surfaces which would float within

the basic grid. This would complicate the application of the boundary

conditions on the fin surfaces. Another approach, would be to subdivide the

flow domain into several sub-regions each containing the flow between adjacent

fin surfaces. Relatively simple transformations would be applied separately

in each sub-region to map adjacent fin surfaces onto constant computational

coordinate planes.

Relatively coarse meshes could be used in each sub-region and the computations

in the various sub-regions could be linked in a manner suggested by Hindman, et al.9

Both the above mentioned approaches are in principle capable of handling

general fin surface geometries.

To simplify the development for the present study, the analysis is

restricted to relatively thin fins with sharp edges which lie approximately

along constant 4 planes (cf., Fig. 1). A thin fin approximation is emrl'oyed

which neglects the fin thickness but retains the actual fin surface slopes.

For an important class of body-fin configurations, the thin fin approximation

allows the direct use of the basic grid generated for the body alone shape

(see Sec. 2) without the introducrl- floating points to describe the fin

surface or additional mappings. To ve. the thin fin approximation and the

versatility of the computational method presented here (see Secs. 2 and 3),

comparisons are made of computed and measured surface pressure distributions

7 for body alone, body-wing and body-wing-tail configurations. A representative

sampling of these is presented in Sec. 4.

* 2. Notation and Preliminaries

The numerical methods for treating fin body combinations presented here

differ from existing supersonic inviscid flow field codes only in the --

treatment of fin surfaces. In the present work, the procedures for treating S
Lb(
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fin surfaces, which appear in Sec. 3, will be described and implemented within

the context of the algorithm described in Refs. 7 and 9. However, this fin

treatment can be adapted in a straightforward manner to other existing

supersonic inviscid flow codes which have the capability of treating internal

shock waves either by "tracking" or "capturing".

A body oriented cylindrical coordinate system (r, ,z) depicted in Fig. 1

is used in this study. Standard notation will be used; viz., p is the density,

p the pressure, h the enthalpy, a the sound speed, y the ratio of specific

heats, and q the velocity vector with components (u,v,w) as indicated in Fig. 1.

It is assumed that for z > zo, w > a everywhere. For computational purposes,

attention is restricted to the region z > zo between the body alone, expressed

by r=b(o,z) and the bow shock wave, expressed by r=c(O,z). This region is mapped

into the computational region Z > zo, 0 < X < 1, 0 < Y < 1 by the standard

normalizing transformations 1,4,5,7

Z = z, X = (r-b)/(s-b), Y = 0/0o (1)

where 0o is the 0 value of a symmetry plane if one exists and 2v otherwise.

Every computational plane Z = constant is covered by a grid with uniform

AX and AY. As will be described in Sec. 3, the fin cross-section is represented

by the thin fin approximation as double valued grid points lying along portions

of certain Y = constant grid lines; cf., Fig. 2.

The algorithm for advancing the unknown flow field quantities from Z = Zk

to the next axial station Z = Zk+AZ depends on the location of the individual

mesh points in the shock layer. These are divided into the following four types:

interior, body surface, shock, and fin surface point. The numerical procedures

used to treat the first three types of points are essentially the same as those ii
given in Refs. 7 and 9. The only difference is that the inviscid, weak

conservation equations have been recast to simplify the source term. For
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interior points the MacCormack predictor-corrector scheme is applied directly

to the associated conservation form of these equations in the X, Y, Z space.

The points on the body and bow shock surfaces are treated using predictor-

corrector methods applied to certain characteristic compatibility relations

for each surface along with the appropriate flow boundary conditions. See

Refs. 7, 10 and 11 for complete details.

3. Computational Procedure for Fin Surfaces

The Thin Fin Approximation

The thin fin approximation is applicable to fins with surfaces that lie

close to a constant 0 plane, say o f, which is defined as the fin plane.

The fin geometry is assumed to be represented by two surfaces, the upper and

lower surfaces, each described independently by relations of the form

O f + a (r,z). (2)

In the cross-section Z = const., the actual fin surfaces will lie within the

computational mesh as shown in Fig. 2. The thin fin approximation assumes that

I of is small and thus places the fin surfaces along the fin plane corresponding

to Y = Yf in each Z = constant plane. Although the fin is approximated by a

zero thickness plane lying on o 4)f, the correct description of the fin

surface slope is retained. Only the fin surface slopes and their r and z

derivatives are required. The derivatives of a, correct to 0(Ia0), are given by

* rar= tan 0, r z = tan v,

rorr = sec2 e (Or - Or) - Or

rozz = sec2 evz - or tan2v, rorz = sec2O ( z - Oa)

Here e and v are the angles between the fin surface tangency plane and the fin

plane in the r and z directions,respectively Within the restriction that lal

be "small", the thin fin approximation can be applied to arbitrary fin

geometries including surfaces with discontinuous slopes and fins with "small"
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deflections, camber, and variations in dihedral.

The Numerical Procedure For Fin Surfaces

The numerical algorithm for treating fins by the thin fin approximation

requires that the computational mesh be chosen so that each fin plane is

coincident with a computational mesh plane, Y - Yf. Two sets of computational

points are carried on the Y = Yf plane to describe the flow properties on the

upper and lower surfaces, (cf., Fig 2). As the calculation is marched down

the length of the body, fin surfaces are encountered on Y = Yf. Thus a point

at some X may at one axial location be an interior flow field point and in

the next axial step move onto the fin. The interior point is split into two

points corresponding to the upper and lower fin surfaces. The fin points thus

created are referred to as leading edge points. For a fixed X, a pair of

points which are on the fin at one axial step can in the next step move off

the fin and become a single interior flow field point. Such a point will be

referred to as a trailing edge point. The flow variables at leading and

trailing edge points are determined from an appropriate local analysis which

is described in the following subsections. The adjustment for the presence

of a leading or trailing edge is made immediately after the completion of the

step in which the edge is encountered. The values of the flow variables prior

to the adjustment are termed "upstream" while the adjusted values are termed

"downstream".

All points on the fin surfaces not designated leading or trailing edge

points are advanced using certain characteristic compatibility relations and

the tangent flow boundary condition as described in Ref. 11. These relations

are evaluated numerically within the framework of the thin fin approximation

by placing all fin surface flow quantities on the fin plane and making all

evaluations at the fin plane. The juncture of the fin and the body is assumed
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to be a sharp corner where the flow velocity is directed along the corner.

This condition and special characteristic relations I I are used to advance the

points along the juncture. Discontinuities in the fin surface slope are

explicitly treated using essentially the same techniques as those for treating

discontinuities in the body surface slopes given in Refs. 7 and 10 with

appropriate modifications to account for the form of (2) defining the fin

surface.

Leading Edge Points

The downstream flow properties at leading edge points are determined by

a local analysis based on the computed flow upstream of the edge and the

prescribed local fin geometry. Using this information, the Mach number normal

to the leading edge, Mn, is determined. If Mn > 1 an attached shock or

expansion fan occurs in most cases which permits a local analysis (see,

e. g. Chapter XI, of Ref. 12). The velocity component tangent to the edge,

is unaffected by the edge and all other downstream flow quantities are

determined by turning the normal flow component using either an oblique shock

or a Prandtl-Meyer expansion. A similar procedure for the case of an attached

oblique shock has also been used in Ref. 6. In Ref. 6,

the leading edge shocks are "tracked" downstream of the edge whereas in the

present work these shocks are "captured" using the conservative and

dissipative properties of the interior point scheme without additional numerical

smoothing.

At leading edges where a compression turn is required, the condition

K Mn > I does not guarantee the existence of an attached oblique shock. For

sufficiently large turning angle, 6, a detached shock wave will be present and

a purely local analysis is, at best, an approximation. However, it has been

£possible to formulate empirical rules for determining reasonable leading edge
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conditions. This procedure predicts an effective shock angle which is used

to turn the normal flow component and assigns he streamline direction at the

leading edge. When a detached shock occurs, the upper and lower fin surfaces

are treated independently of one another. If one surface permits either an

attached shock or a Prandtl Meyer expansion this procedure is applied as

described above. Such an approach is suggested by the experimental data of

Ref. 13. When the upstream flow crosses the edge with Mn < 1, the flow at

the leading edge is free of shock waves. On an expansion surface the flow is

accelerated to sonic velocity and then turned into the plane of the wing

using a Prandtl-Mayer expansion. A compression surface is treated by

isentropically compressing the flow to an empirically determined Mach number

and specifying a streamline direction.

On highly swept wings,which form strong leeside vortices,Mn is usually small

(i.e. Mn < < 1) or negative. On such configuration the streamlines flow

outwards at wing tip,and leading edge pressure and density values are set

equal to those at the adjacent wing point while the resulting velocity vector

is directed along the wing tip.

For the leading edge points at the fin-body juncture a special procedure

is required. The flow in the vicinity of these points features a complicated

shy-k interaction pattern which probably cannot be resolved within the

relatively coarse mesh used in the present calculations. Accordingly, a simple

heuristic procedure is used to determine the flow variables immediately down-

stream of the leading edge corners. The upstream velocity vector on the body

,. lies in the body tangency plane which also contains the corner direction. The

flow downstream of the leading edge corner is obtained by rotating the

velocity vector within the body tangency plane and aligning it with the corner

using either the oblique shock or the Prandtl-Meyer turning realtions.
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The technique of applying a local analysis at the leading edge is employed

to improve the quality and robustness of the solution near the leading edge

and thus to enhance the use of coarse grids. At a sufficiently large number

of steps away from the edge, the influence of the conditions employed at a

leading edge will disappear and all treatments result in similar flow fields.

In certain situations it is difficult to determine reasonable leading edge

conditions. Accordingly, the strategy of marching directly across the leading

edge without applying a leading edge adjustment has been used. This approach

works well as long as the pressure rise at the leading edge is restricted to

less than a factor of two.

Trailing Edge Points

At a trailing edge the two points on Y = Yf,representing the upper and lower

fin surfaces,are coalesced into a single interior flow field point. A local

analysis is used to determine the flow downstream of the edge from the computed

flow on each fin surface upstream of the edge and the given local fin geometry.

One approach, described in Ref. 11, consists of turning the normal flow

component from both surfaces, using an oblique shock and Prandtl-Meyer

expansion, onto a plane containing the trailing edge. The orientation of this

plane is iteratively determined by requiring that pressure on both surfaces

be equal. The conditions on both sides of this plane are then averaged to

produce the conditions at the coalesced interior flow field point. Such a

procedure can be applied only where Mn is sufficiently large to assure the

existence of the necessary oblique shocks. In practice it has been found that

averaging the upper and lower surface at the trailing edge without using the

iterative process to determine pressure does not change computed results

significantly. This shorter process is currently used whenever the trailing

edge is supersonic. At subsonic trailing edges an averaging process is used
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but the Interior flow point on the fin plane and adjacent to trailing edse

point is included in the average.

Special Differencing Procedures

Special treatment is provided for advancing the outermost grid point on

the fin surfaces, at say X - Xt , and the adjacent interior flow point,

X'+ 1 - Xx + AX. The MacCormack scheme for advancing the interior flow point,

X1+1, must be modified since there are two sets of flow values at XJ

corresponding to the upper and lower fin surfaces. The present procedure is

to advance the flow variables at Xt+1 by the basic interior point scheme using

the flow values at X, corresponding to the upper surface and then repeating

the calculation at Xt+ 1 using the lower surface values at Xj. The two values

of the conservation vector, U, are then averaged at the end of the predictor

and corrector step to obtain the final value of U at X1+ 1 . The outermost

fin points are advanced using the interior flow values at Xj+1 .

An alternate strategy is to use one sided differences to advance the

interior point at Xj+1 . If this option is used the outermost fin point is

also advanced without wing information at X9+ 1 . Differences in the X direction

which would normally be formed using properties at XX and Xt+1 are set to

zero. This option is used in most cases which use a local analysis at the

leading edge.

Special Y differencing procedures are also applied downstream of leading

edges which feature attached shock waves. It has been found in example

calculation on two dimensional rectangular fins that the standard procedure

for advancing the fin surface points predicts inaccurate surface pressures

immediately downstream of such discontinuities. In this region, the Y

" fferenceo sed to advance the fin surface flow variables must be taken

ac- .. the oblique shock generated by the leading edge and these Y differences

will be unrealistic for a few steps following the formation of a leading edge
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point. To circumvent this problem, the Y differences used in tl - fin

surface calculation are multiplied by a factor which is zero at the leading

edge and increases to unity after a few steps. The selection of the number

of steps for which the Y derivatives are damped is based on the values of the

Y derivative at the leading edge and on an estimate of the number of steps

required for the shock to move out to the adjacent row of points.

In a number of the examples to be discussed, calculations will feature

large body or tip vortex. When such cases are run on fine grids it is

necessary to add dissipation to the interior flow, body and wing surfaces.

This is accomplished using a Shuman filter with a density switch.
16

4. Numerical Results

The results computed with the present code are presented in this section

and compared with the experimental data. The investigated cases consist of

body alone, body-wing, body-tail and body-wing-tail configurations. The wing

and tail surfaces have sharp leading and trailing edges which feature normal

velocity components that range from subsonic to supersonic. All computations

assume a perfect gas with y = 1.4. The computations are started near the body

vertex using a numerically generated conical flow field (see ref. 11).

Inviscid calculations for the body alone configuration at high incidence

produce a leeside crossflow shock which is not present in the experimental

flow field. A more realistic leeside flow field can be generated by applying

an additional boundary condition, or Kutta condition, near the experimentally

observed separation point. This destroys the crossflow shock and produces a

leeside recirculation region or a vortex which is in agreement with experimental

observations. In the current study the separation point is specified as a

function of distance along the body. The separation location generally falls

between two surface grid points and both of these points are specially treated.

V "1-83



The basic presumption in specifying properties at these points is that the

velocity at the separation point should be oriented along the separation line

and that pressure and density should vary smoothly across the separation line.

The resulting flow field is illustrated in Fig. 3 and is qualitatively similar

to the results of Oberkampf 15 , which are also shown. Similar numerical

results have been obtained by Klopfer and Nielsen16 although their method of

specifying the Kutta condition differs from that outlined above.

A comparison of calculated and measured surface pressures is given in Fig. 4

using the experimental data of Perkins and Jorgensen. 17 Pressure profiles

have been computed with and without use of the Kutta condition. Clearly,

application of the Kutta condition improves the agreement between calculation

and experiment.

In Ref. 18 a tangent ogive body, equipped with tail fins of several different

planforms, is tested in supersonic flow. Numerical results have been compared

to experimentally measured surface pressures taken at Mach 3.7 for configurations

featuring clipped delta and cranked tail fins. Both types of fins feature

surface slope discontinuities at various locations along the surface. The

freestream Mach number is sufficiently large to allow an attached shock

solution at the fin leading edge in almost all cases. Calculated and measured

surface pressures are compared for the cranked dalta wing in Fig. 5 and are in

reasonable agreement. The scatter in the ex:perimental data is a result of

plotting experimental measurements from several different runs. On fin

surfaces, which feature strong leading edge shocks, the leading edge pressure

is over-predicted at the root and the calculated pressure jumps, occurring "

at the various surface discontinuities, also tend to be greater than experimental

values. The thick corner boundary layer and the complex leading edge shock-body

boundary interaction, presumably, have a large influence on the corner and
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account for much of this discrepancy. Another area of disagreement occurs

along the tip. Here predicted and measured pressures are of similar value,

but the experimental pressure profile features a negative slope, while the

numerical pressure distribution is almost constant. It is not clear whether

this discrepancy is due to viscous phenomena. On fin surfaces which have a

weak leading edge shock (or expansion) the predicted and measured fin tip

pressure profiles are in good agreement. Also, the leading edge pressure

at the corner is close to the experimental value. Over the entire span,

calculated pressures on the trailing edge panel tend to be less than measured,

probably reflecting the existence of a very thick boundary layer or

separation.

Wind tunnal tests on the swept wing configurations of Ref. 19 (see Fig. 6)

offer an opportunity to compare calculation with experiment for cases where

detached shock waves are predicted to occur. Calculations have been compared

to experiment at the Mach numbers of 2.96, 3.95 and 4.5, and at angles of

attack of 00, +2a, +40 and +60. (Here positive and negative incidence refers

to the windward and leeward wing surfaces respectively). The body-wing

geometry, and sample results are shown in Fig 6&7. These indicate that the

current computations accurately reflect changes in Mach number and angle of

attack.

The data of Ref. 19 also include pressure measurements along a pitch

plane body meridian. At positive incidences the instrumented ray is on the

windward side of the body while at negative incidences it is on the lee-side.

These measurements are compared to numerical results at an incidence of

60, 00 and -60 in Fig. 8 for a Mach number of 2.96. At a= 60 the body

alone data are in good agreement. The influence of the wing on the body

causes an increase in the experimentally measured pressure. This increase is
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correctly reflected by the calculations, but the peak predicted values are

located approximately one caliber downstream of the measured ones. At an

incidence of 00, the same trend is visible but the lagging appears to be

somewhat less. When the angle of attack is changed to -60, the presence of

the wing causes a decrease in body pressure. In this case, the body alone

calculation does not agree well with experiment, presumably due to viscous

effects. The body features a decreasing diameter near the base which

undoubtedly results in changes in the effective body shape due to boundary

layer thickening or separation. The calculated flow field features a crossflow

shock near the base which produces an increase in the leeward meridian pressure

profile. The numerical results for the body-wing configuration are much closer

to experiment and feature the correct downward change in the body surface

pressure. The predicted onset of the wing influence on the leeward meridian

body pressure does not appear to lag the experimentally measured one.

On Fig. 9 additional comparisons are shown of computed and measured surface

pressures for a delta planform wing-body configuration for which detached

leading edge shock is predicted. The configuration features a 6-percent

thick, double-wedge wing at Mach 2.86 at an angle of incidence of 8.60.

Experimental measurements 20 were available along several span-wise locations

and are in agreement with present computations.

Normal force and moment prediction for an airplane type configuration is

illustrated on Fig. 10. The computations were performed at Mach 2 at angle of

incidence of 100 and are in good agreement with experiment.2 1 The influence of

the tail is also predicted correctly. The wing and tail surfaces of this

configuration were essentially flat and had attached leading and trailing

edge shocks.
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On Fig. 11 computed normal force and center of pressure coefficients are

compared with experiment2 2 for an ogive-cylinder body with a cruciform type wing

and tail surfaces. Three wing planforms, yielding different leading edge

sweep angles, are included along with delfected and undeflected tail surfaces.

The comparison is made at Mach 2.86 at incidences of 60 and 120, providing

subsonic leading edge conditions for all three wing planforms.

The computed normal force and center of premure values are in reasonable

agreement with experiment for all three wing planforms. Variation in wing

aspect ratio produces a monotonic change in the computed normal force

coefficient. This is contrary to experimental results in which the minimum

value is yielded by a wing with an intermediate aspect ratio. Presumably

the non-linearity in experimental results is due to the influence of the leeside

vortex which is not modeled with sufficient accuracy in the computations.

The computed crossflow velocities for the wing of the minimum aspect ratio

is qualitatively illustrated on Fig. 12. No experimental data were available

for comparison.

6. Concluding Remarks

A numerical method has been developed which predicts the inviscid supersonic

flow field about finned configurations of engineering interest. The computational

requirements are generally modest. For example, the wing-body and cruciform

body-tail cases, examined in the preceding sections, nominally required 3 and 7

minutes respectively of CPU time on a CDC 6500. The present study differs from

previous methods by treating the fin and body geometries separately. At present,

a thin fin approximation is employed which limits the applicability of the

computational procedure to relatively slender fins with sharp leading edges.

The fins must approximately lie along planes which intersect at a line inside

the missile body. With this formulation it is possible to treat a wide variety
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of configurations of engineering interest which can feature an arbitrary

number of fins and tails containing small deflection, camber or variation

in dihedral. By appropriate modeling at wing tips and at estimated body

separation points, it appears feasible to simulate flow field vortices.
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Figure 1. Cylindrical coordinate system used for inviscid flow
calculation.
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Figure 2. Cross-section view of the thin fin approximation.
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Figure 8. Calculated and measured body surface pressures with and i
without fins on the windward and leeward meridian at Mach 2.96.
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Figure 10. Measured and calculated normal force and center of pressure on a

body-wing and body-wing-tail configurations at Mach 2.0.
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